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The paper models evolution in pecunia—in the realm of finance.
Financial markets are explored as evolving biological systems.
Diverse investment strategies compete for the market capital
invested in long-lived dividend-paying assets. Some strategies
survive and some become extinct. The basis of our paper is
that dividends are not exogenous but increase with the wealth
invested in an asset, as is the case in a production economy. This
might create a positive feedback loop in which more investment
in some asset leads to higher dividends which in turn lead to
higher investments. Nevertheless, we are able to identify a unique
evolutionary stable investment strategy. The problem is studied
in a framework combining stochastic dynamics and evolution-
ary game theory. The model proposed employs only objectively
observable market data, in contrast with traditional settings rely-
ing upon unobservable investors’ characteristics (utilities and
beliefs). Our method is analytical and based on mathematical
reasoning. A numerical illustration of the main result is provided.

evolutionary finance | evolutionarily stable investment strategies |
survival | stochastic dynamics | local stability

Despite bulls and bears adorning financial investors’ desks
and the financial press and traders’ assurance that “it’s a jun-

gle out there,” the emergence of evolutionary models in finance
has been slow. However, as witnessed by the present special issue,
the research on evolutionary finance (EF) is gaining traction.

Evolutionary ideas have a long history in the social sciences
going back to Malthus, who played an inspirational role for
Darwin [see, e.g., Hodgson (1)]. Veblen (2) coined the term
“evolutionary economics” and started a systematic use of the
evolutionary approach in the social sciences (3). Schumpeter (4)
laid the groundwork for evolutionary economics in the 20th cen-
tury. A crucial role in the creation of this branch of economics
was played by the works of Alchian (5), Boulding (6), Downie (7),
D. Friedman (8, 9), M. Friedman (10), Hodgson (1, 11), Penrose
(12), Nelson (13), and Nelson and Winter (14).

Research in EF was started by the Santa Fe Institute, and the
first time the term “evolutionary finance” appears is in one of
its publications dating back to 1995 [LeBaron (15)]. In the sem-
inal Santa Fe Institute working paper “Market Force, Ecology,
and Evolution,” Farmer (16) argues that financial market mod-
els can benefit from reasoning analogous to models of biological
evolution. In particular, it would be useful to make investment
strategies and not investors the actors in the model. This shift
parallels biological models in which the interaction of species
and not that of individual organisms are considered. Indeed, in
financial market models, one can write market demand for assets
as the wealth-weighted average of investors’ demand. Alterna-
tively, one can group all investors’ wealth following the same
strategy into one entity and write market demand as the wealth-
weighted average of investment strategies. While this is a trivial
operation mathematically, it shifts the focus away from the inten-
tions behind the investment strategies (e.g., utility maximization
subject to expectations) toward the actions taken in financial
markets.

Many empirical studies [for example, the well-known Fama
and French factor models (17, 18)] have shown that a few strate-

gies are sufficient to understand the dynamics of thousands of
assets. Equating aggregate demand with the supply of assets,
asset prices are then the wealth-weighted average of a few invest-
ment strategies. Thus, in order to understand asset returns, which
are the ratios of next period prices (plus eventual dividends) to
current period prices, one needs to understand the evolution of
wealth behind investment strategies. As Farmer (16) notes, this
evolution of wealth models the market selection process acting
on the financial species, i.e., the investment strategies. While
the market selection force reduces the variety of species in the
financial markets, Farmer (16) also points out that there is a
countervailing force that innovates new strategies. In biological
evolution this is mostly done by sexual reproduction along which
genes are recombined. In financial evolution, there are other
methods of innovation including rational and behavioral aspects,
e.g., backtesting and forward performance testing (often akin to
adaptive heuristics in game theory [cf. Hart (19)]).

Achievements of EF
What has this new paradigm for finance achieved so far? On
one hand, it has improved our understanding of the dynamics
of asset prices since many stylized facts, such as, for instance,
excess volatility, can be explained by the endogenous dynam-
ics of wealth. Excess volatility was first pointed out by Shiller
(20) who showed that the prices of the Standard and Poor’s
(S&P) 500 index are more volatile than the fundamental val-
ues computed with models of expected utility maximization given
rational expectations. Boswijk et al. (21) showed that a sim-
ple EF model can explain the excess volatility of the S&P 500.
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economy. While this might create positive feedback loops, we
show that the dynamical system has a unique evolutionary
stable investment strategy that characterizes a locally stable
equilibrium state. Our result is of high significance for any
market economy since it shows that the dynamic interaction
of investment strategies tends to produce stable prices. Mis-
pricing therefore occurs only in extraordinary times when the
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Other stylized facts that are hard to reconcile with utility maxi-
mization include stochastic volatility, autocorrelation, and heavy
tails in the return distribution of asset prices [cf. Cont (22) for
a more exhaustive list]. For comprehensive treatments of the
achievements of EF in asset pricing we refer to LeBaron (23) and
Hommes (24).

On the other hand, EF also contributes to portfolio theory,
which is not descriptive but normative. Portfolio theory asks how
to invest. The traditional answer [see, for example, Markowitz
(25)] is that one should maximize an objective function given
the return expectation one has. In this view, returns are taken
as exogenous. However, modeling the financial market via a few
investment strategies, the impact of the strategies (not the indi-
vidual investors) on the market is obvious, and a game theoretic
approach would be more suitable. One should select a strategy
that performs well in competition with the other strategies. Per-
forming well in evolutionary models means at least to stay alive.
Thus, in evolutionary portfolio theory there is a focus on so-
called survival strategies. Applying this idea to the evolution of
relative wealth, survival requires that no other strategy achieves a
higher growth rate of wealth. Of course, this criterion has always
been criticized by adherents of utility maximization [see, e.g.,
Samuelson (26)], but as Sciubba (ref. 27, p. 125) put it eloquently,
a survival strategy “might not make you happy, but will definitely
keep you alive.”

One might suspect that the existence and the characteriza-
tion of survival strategies depend on the exogenous stochastic
process and on the market ecology, i.e., the set of investment
strategies competing for wealth. This is indeed the case when
one limits the pool of strategies. However, since there is always
a potential for innovation, it would be risky to do so. Indeed the
most general result on survival strategies that was achieved so
far [Evstigneev et al. (28)] shows the existence of a survival strat-
egy for any ecology of investment strategies and any dividend
processes. The survival strategy can be characterized as being
a well-diversified fundamental strategy, which is contrarian. As
such, it might explain the great success of value investing in
equity markets [cf. Gergaud and Ziemba (29)]. The survival strat-
egy found in Evstigneev et al. (28) is a so-called basic strategy
because it only conditions on the exogenous stochastic process
of dividends. In addition, within the set of basic strategies, it
is unique. In general, however, there might exist other (nonba-
sic) strategies achieving the same growth rate of wealth as the
survival strategy.

How does this result square with other results in EF? The
result of Evstigneev et al. (28) is purely analytical, while most
other related results in EF are based on simulations. Thus, the
conditions under which the result of Evstigneev et al. (28) is
obtained are clearly understood.

Furthermore, most other results in the literature are based on
a limited set of strategies—not allowing all innovations. Limit-
ing the market ecology has been a successful strategy to better
understand asset prices. For example, the paper of Scholl et al.
(30) in this special issue limits the ecology to a fundamental, a
momentum, and a noise trader strategy and is able to explain
many interesting stylized facts of asset prices. Surely, models
explaining stylized facts of asset pricing get stronger the sim-
pler they are. However, such a limitation is potentially dangerous
when one wants to draw general conclusions for portfolio the-
ory. A strategy that is best in a restricted ecology might suffer
severe losses when a new strategy from outside the current ecol-
ogy emerges. A similar remark applies to the famous Brock and
Hommes model (24), which is also based on a similar set of three
types of strategies but enriches the evolution of wealth by allow-
ing investors to switch between the three strategies. As a result,
much richer asset price dynamics may be achieved. However, as
Hens and Schenk-Hoppé (31) have shown, introducing a strat-
egy that stolidly follows the fundamental strategy of Evstigneev

et al. (28) would drive out all other strategies of the Brock and
Hommes model.

Finally, results in EF depend on the market microstructure.
In the famous Santa Fe model (cf. ref. 23), strategies are gener-
ated by genetic algorithms, and markets are cleared by a market
maker. As was shown in ref. 32, also using genetic algorithms,
the survival strategy of Evstigneev et al. (28) will evolve when
one uses a batch auction as in Evstigneev et al. (28)∗.

A survey describing the state of the art in the field by 2016
and outlining a program for further research is given in ref. 35.
An elementary textbook treatment of the subject can be found in
Evstigneev et al. (ref. 36, chap. 20). For a most recent review of
studies related to EF, see Holtfort (37). A novel line of research
in EF considering models with endogenous asset supply was
initiated in Amir et al. (38).

Contribution of This Paper to EF
The present paper draws on previous work by Evstigneev et al.
(39), where a prototype of the model studied here was devel-
oped and some versions of the results of the present paper were
obtained. The main basis of the modeling framework considered
here lies in the fact that the dividends paid by the assets depend
not only on exogenous random factors but also on the fraction
of total market wealth invested in each particular asset. This is
an important extension of EF models since in reality, dividends
do not fall from trees [as in the famous Lucas (40) model] but
are produced by firms that use capital as one of their inputs. The
more wealth is invested in the outstanding stocks of a company,
the easier it is to raise new capital and thus to produce more
dividends.

This claim follows from a long tradition of capital-based
asset pricing models. First, Tobin (41) claimed and Tobin and
Brainard (42) gave evidence that firms increase their capital
stock if their market value increases above the value of their
capital in place, i.e., above their book value. This is the famous
q-theory of investments according to which the ratio of book
to market is essential for investments. Li et al. (43) estimate
the production function that is implicit in q-theory as a concave
power function determining profits from the amount of capital
employed by the firm.

Finally, as Lintner (44) first showed, dividends are a fixed pro-
portion of profits, so that our assumption that dividends depend
on the market capitalization of the firm has a good foundation
in finance. Indeed, Fig. 1 shows market capitalization and divi-
dend data of three firms that have dividend payouts in each year
of the sample 1981 to 2019.† We fit a dividend production func-
tion of the form (c1b)c2 , where b is the firm’s capital and c1, c2
are firm-specific and estimated. We find that the average rela-
tion between the market capitalization of dividend-paying firms
and their total cash dividends is given by such a concave func-
tion. Of course, these dividend functions differ across firms. A
limitation of our current model is that it does not capture firms
that do not pay dividends or make any other disbursements to
shareholders.

As we illustrate below, the average relation between the mar-
ket capitalization of dividend-paying firms and their total cash
dividends is given by a simple increasing and concave function.
Of course, these dividend functions differ across firms. The lim-
itation of our current model is that it does not capture firms
that do not pay dividends or make any other disbursements to
shareholders.

*That the asset price dynamics of EF models depends on the market microstructure is
shown in Bottazzi et al. (33) and Anufriev and Panchenko (34). The point made in Lens-
berg and Schenk-Hoppé (32) is to show that also the outcome of the market selection
depends on the market microstructure.

†The data are available in Dataset S1.
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Fig. 1. Relation between market capitalization and total dividend payouts.
The solid lines are the result of a linear regression of logarithms of both
quantities and estimated separately for each firm. To compare the shape
of the dividend production function across companies, each firm’s market
capitalization and dividend payout is divided by the firm’s maximum market
capitalization in the sample. General Motors is shown in green, Exxon is in
red, and Procter & Gamble is in blue. The fits, measured as R2, are 0.73, 0.83,
and 0.92, respectively.

We present a rigorous EF stock market model with endoge-
nous dividends‡ . This important extension of the EF model
comes at a cost. For this paper we limit the attention to so-called
fix-mix strategies, which hold the investment proportions con-
stant over time. We note that the class of fix-mix, or constant
proportions, strategies we consider in this work is quite com-
mon in financial theory and practice; see, e.g., Perold and Sharpe
(46), Mulvey and Ziemba (47), and Browne (48).§ Moreover,
recent empirical evidence by DeMiguel et al. (49) has shown that
even the simplest fix-mix strategy that invests the same fraction
in all assets is at least as good as sophisticated mean-variance
optimization strategies. Thus, from the practical and from the
theoretical standpoints, this class of strategies provides a conve-
nient laboratory for the analysis of questions we are interested in.
It makes it possible to formalize in a clear and compact way the
concept of a type (genetic code) of an investment strategy, which
determines the evolutionary performance of its portfolio rule in
the long run. From the practical standpoint, fix-mix strategies
are of importance since under certain general conditions they
might lead to endogenous growth of wealth—volatility-induced
growth [Dempster et al. (50)]. Finally, it should be noted that
in models with independent and identically distributed (i.i.d.)
random factors, fix-mix strategies typically outperform all of the
others (51), and we conjecture that this is the case for the model
at hand, although a proof of this conjecture is not available at
this point.¶

The strategies determine the ecology of the market and its
random dynamics over time. In the evolutionary perspective,
the outcome of survival or extinction of investment strategies
is governed by the long-run behavior of the relative wealth of
the strategies, which in turn depends on the combination of the
strategies in the ecology. A strategy is said to survive if it gener-
ates with probability 1 a strictly positive share of market wealth,
bounded away from 0, over an infinite time horizon, irrespective
of the set of investment strategies in the ecology. It is said to

‡A similar feedback effect has been studied by Cherkashin et al. (45) in a much simpler
setting. They analyze a model with short-lived assets—one for each state of the world -
in which the probability of occurrence of a state of the world depends on the amount
invested in the asset paying off in that state.

§ In fact, such strategies are routinely solicited and used by pension and investment funds,
such as Teachers Insurance and Annuity Association of America and College Retirement
Equities Fund and Vanguard.

¶Numerical simulations of the model are described in Illustration.

become extinct if the share of market wealth corresponding to it
tends to 0.

An investment strategy, λ∗ is called evolutionarily stable if the
following condition holds. Suppose the ecology consists of N − 1
strategies 2, 3, . . . ,N (nonmutants), a new strategy 1 (mutant)
enters the existing ecology, and moreover, the initial share of
wealth of this new strategy is small enough. Then the new strat-
egy 1 will be driven out of the market by the other strategies
in the long run: its market share will tend to 0 with probability
1 as time goes to infinity. This definition combines ideas from
two fundamental solution concepts of evolutionary game theory
proposed by Maynard Smith and Price (52) and Schaffer (53).
We provide an effective construction of the evolutionarily sta-
ble strategy λ∗ and trace its links to the famous Kelly portfolio
rule of betting your beliefs [Kelly (54), Breiman (55), Thorp (56),
Algoet and Cover (57), and Hakansson and Ziemba (58)].

Our main result—Theorem stated in the next section—
demonstrates the existence and uniqueness of an evolutionary
stable strategy (ESS) for our model. This result makes an impor-
tant contribution to the asset pricing as well as to the portfolio
theory aspect of EF. Our result recommends to investors to struc-
ture their portfolio based on fundamentals such as dividends.
Moreover, the portfolio should be completely diversified and
needs to be rebalanced over time, i.e., the investment propor-
tions need to be restored after deviations resulting from price
changes. If these rules are followed by all investors, then any
other investment strategy will lose wealth relative to this funda-
mental strategy. If the market were governed by another strategy,
then this strategy could survive since there exist better strate-
gies that will gain against the incumbent strategy even when
initially the entrant strategy has little wealth. Thus, in order
to survive, it is necessary to follow the strategy we identified
in Theorem.

Theorem gives support to the discounted cash flow rule, which
is the classical asset pricing rule in traditional finance models
with utility maximization given rational expectations. The price
of any equity should be equal to the discounted sum of its future
dividends#. However, there are important differences. First,
Theorem shows that in order to survive, one needs to discount
the future relative dividends. Second, observing these prices as
the market outcome is more likely since this is the unique ESS,
but this is not guaranteed, because global stability is unresolved.
Finally, note that without rational expectations one would have
to learn the process determining future dividends. A natural
approach would be to estimate it from the history of dividends
one has observed. As our model shows, this might, however, be
misleading since actual dividends depend on the wealth invested
in the assets. By the interaction of the heterogeneous strate-
gies in the market we would expect to see quite complicated
trajectories of realized dividends. Nevertheless, the ESS does
not depend on the ecology of the market, neither when strate-
gies are still competing with each other nor when the ESS is
established.

The intuition for our main result, the identification of an evo-
lutionarily stable investment strategy and its characterization,
is as follows. As the capital invested in a particular investment
strategy increases, the assets that are overweighted (relative to
the market portfolio) become more expensive, lowering their
returns. Likewise, assets that are underweighted become cheaper
and see their returns increase. Both forces are to the disad-
vantage of the investment strategy at hand (and to the benefit
of other investment strategies that have opposing weights). An

#The traditional argument goes as follows: the price of equity today should be equal
to the discounted payoffs the equity holding entitles to next period, i.e., equal to the
resale value and the dividends being paid. Iterating this argument forward, at any point
in time the price is then equal to the discounted sum of all future dividends.
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evolutionarily stable investment strategy must, therefore, with
increasing capital, move prices into a direction that does not
offer such an advantage to other strategies. As it turns out, a
fundamental value in relative terms provides these conditions.
Thinking in terms of growth rates in random dynamical systems,
an evolutionarily stable investment strategy must imply asset
returns such that no other investment strategy can have a positive
growth rate.

The structure of the remainder of the paper is as follows.
Model and Results describes the model and states the main result
(Theorem)—a rigorous proof of the results can be found in SI
Appendix, Methods. In Illustration, we provide an intuitive expla-
nation and illustrate the formal arguments by a simulation. We
conclude with Discussion.

Model and Results
We consider a market where K ≥ 2 assets are traded at moments
of time t = 0, 1, . . .. The supply of each asset k = 1, . . . ,K is con-
stant (independent of time) and is denoted by Vk . There are
N ≥ 2 investment strategies interacting in the market. An invest-
ment strategy (portfolio rule) is represented by a nonnegative
vector λi = (λi

1, . . . ,λi
K ) with components adding up to 1; i.e., it

lies in the unit simplex ∆K .
The market is influenced by random factors modeled in terms

of a sequence of independent identically distributed elements
s1, s2, . . . in a measurable space S . The random element st is
interpreted as the state of the world at time/date t . The wealth
of investment strategies i = 1, 2, . . . ,N at date t ≥ 1 is denoted
by w i

t =w i
t (s t), where s t := (s1, . . . , st) stands for the history of

states of the world up to date t . Initial endowments w i
0> 0 of all

of the investment strategies at date 0 are given.
An investment strategy i at each time t allocates wealth w i

t

across assets k = 1, . . . ,K in constant (independent of time and
random factors) proportions λi

k .
Given the set of investment strategies λi , i = 1, . . . ,N , the

total amount allocated for purchasing asset k at time t is
expressed as

〈λk ,wt〉 :=

N∑
i=1

λi
kw

i
t , λk := (λ1

k , . . . ,λN
k ), wt := (w1

t , . . . ,wN
t ).

[1]

At each time t = 1, 2, . . ., assets k = 1, . . . ,K pay dividends

dt,k = dk (st ,Wt−1,k )≥ 0 [2]

depending on the fraction

Wt−1,k :=
〈λk ,wt−1〉∑K
j=1 〈λj ,wt−1〉

[3]

of total market wealth

Wt−1 :=

K∑
j=1

〈λj ,wt−1〉=
I∑

i=1

w i
t−1 [4]

allocated to asset k . The functions dt,k (s, b), b ∈ [0, 1], are
assumed to be jointly measurable with respect to their arguments
and satisfy

K∑
k=1

dt,k > 0. [5]

We denote by pt = pt(s
t)∈RK

+ the vector of market prices of the
assets. For each k = 1, . . . ,K , the coordinate pt,k of the vector
pt = (pt,1, . . . , pt,K ) stands for the price of one unit of asset k at

date t . Below we describe how these prices are formed in equilib-
rium over each time period. A portfolio of investment strategy i
at date t = 0, 1, . . . is specified by a vector x i

t = (x i
t,1, . . . , x i

t,K )∈
RK

+ where x i
t,k is the amount (the number of units) of asset k

in the portfolio x i
t . The scalar product 〈pt , x i

t 〉=
∑K

k=1 pt,kx
i
t,k

expresses the value of the investment strategy i ’s portfolio x i
t at

date t in terms of the prices pt,k . The portfolio vector x i
t depends

on the history s t of states of the world: x i
t = x i

t (s t). This vector
function of s t , as well as all of the other functions of s t we deal
with, is measurable. To alleviate notation, we will often omit s t

in what follows.
At date t = 0 the budgets are given by their (nonrandom) ini-

tial endowments w i
0> 0. Investment strategy i ’s budget/wealth at

date t ≥ 1 is

w i
t = 〈dt + pt , x

i
t−1〉=

K∑
k=1

(dt,k + pt,k )x i
t−1,k , [6]

where

dt := (dt,1, . . . , dt,K ), dt,k = dk (st ,Wt−1,k ), k = 1, . . . ,K .

[7]

The budget consists of two components: the dividends 〈dt , x i
t−1〉

paid by yesterday’s portfolio x i
t−1 and the market value 〈pt , x i

t−1〉
of x i

t−1 expressed in terms of today’s prices pt . If investment
strategy i allocates the fraction λi

k of wealth w i
k to asset k , then

the number of units of asset k that can be purchased for this
amount is

x i
t,k = ρ

λi
kw

i
t

pt,k
, [8]

where 1− ρ∈ (0, 1) is the transaction cost factor. Thus, by
employing the portfolio rule λi = (λi

1, . . . ,λi
K ), a portfolio is

constructed whose positions are specified by Eq. 8.
Suppose that strategies λi = (λi

1, . . . ,λi
K )∈∆K have been

selected. Assume that the market is always in equilibrium: for all
t = 0, 1, . . . and k = 1, . . . ,K , total asset supply is equal to total
asset demand

Vk =

N∑
i=1

x i
t,k , [9]

i.e.,

Vk = ρ

N∑
i=1

λi
kw

i
t

pt,k
[10]

(Eq. 8). Then we get

pt,k =
ρ

Vk

N∑
i=1

λi
kw

i
t . [11]

By combining (11) and (6), we obtain a system of equations that
determines the equilibrium (market clearing) prices

pt,k =
ρ

Vk

N∑
i=1

λi
k 〈dt + pt , x

i
t−1〉, k = 1, . . . ,K . [12]

It can be shown that a nonnegative vector pt satisfying these
equations exists and is unique (for any s t , dt ≥ 0 and any feasible
x i
t−1 and λi

t ) (SI Appendix, Section 2, Proposition 1).
Given a strategy profile (λ1, . . . ,λN ) and initial endowments

w1
0 , . . . ,wN

0 , we can generate a path of the system by using
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Eqs. 6–12. Assume that all quantities are well defined (sufficient
conditions are provided below), then the solution of Eq. 6, which
is linear in wealth, gives the explicit random dynamics

wt = [Id − ρΘt−1Λ]−1Θt−1dt−1, [13]

dt =

(
dk

(
st , 〈λk ,wt−1〉 /

K∑
j=1

〈λj ,wt−1〉

))K

k=1

, [14]

where Id is the N ×N identity matrix, Θt−1 = (x i
t−1,k )ik is the

matrix of portfolios, and Λ is the matrix of all investment
strategies.

The above dynamics makes sense only if pt,k > 0 or, equiv-
alently, if the aggregate demand for each asset (under the
equilibrium prices) is strictly positive. Those strategy profiles
which guarantee that the recursive procedure described above
leads at each step to strictly positive equilibrium prices will be
called admissible.

We give a simple sufficient condition for a strategy profile
to be admissible. It will hold for all of the strategy profiles we
shall deal with in the present paper, and in this sense it does
not restrict generality. Suppose that some investment strategy,
say i = 1, uses a portfolio rule that always prescribes to invest
into all of the assets in strictly positive proportions λ1

k . Then any
strategy profile containing this portfolio rule is admissible (see
ref. 59, p. 167).

Let (λ1, . . . ,λN ) be an admissible strategy profile. Consider
the path of the asset market generated by this strategy pro-
file and the given initial endowments w i

0> 0, i = 1, . . . ,N . We
are primarily interested in the long-run behavior of the rela-
tive wealth or the market shares r it :=w i

t /Wt of the investment
strategies, where Wt =

∑N
i=1 w

i
t is the total market wealth. The

main concept we analyze in this paper is that of an ESS.
Definition: A portfolio rule λ∗ is called evolutionary stable if it

possesses the following property. Suppose there are two invest-
ment strategies, λ2 =λ∗ and λ1 =λ 6=λ∗. Furthermore, suppose
that the initial market share r10 of investment strategy 1 is small
enough: r10 <δ, where δ > 0 is some random variable. Then the
market share r1t of investment strategy 1 will tend to 0 almost
surely; i.e., investment strategy 1 will be driven out of the market
by the other investment strategy λ∗ with probability 1.

The above definition of an ESS combines two fundamental
concepts of evolutionary game theory: the classical definition
of an ESS for continuous populations by Maynard Smith and
Price (52) and its version for discrete populations proposed by
Schaffer (53). The analogy with the former lies in the fact that
the initial relative wealth of the mutant (λ-investment strat-
egy) is assumed to be small enough; under this assumption,
the λ-investment strategy cannot survive in competition with an
incumbent (λ∗-investment strategy). A parallel with the latter is
in the assumption that there is only one mutant type represented
by the λ-investment strategy. Relative wealth is the counterpart
of the relative mass of a continuous population of mutants or
nonmutants in a biological context. A fundamental distinction
between the notion introduced and the classical ones is that in
the present EF setting we are dealing with properties holding
with probability 1, while the classical biological notions of evo-
lutionary stability are concerned with frequencies, probability
distributions, and properties holding on average.

To formulate the main result of this work (Theorem
below) we introduce some assumptions and notation. Put
Dk (s, b) :=Vkdk (s, b). This function represents the total
amount of dividends paid by all of the assets k available in the
market.

Assumption 1. For each s and k the function Dk (s, b) (b ∈
[0, 1]) is strictly positive, differentiable, strictly monotone increasing,
and concave in b.

Assumption 2. For any λ= (λ1, . . . ,λK )∈∆K , the functions
Dk (s,λk ) are linearly independent; i.e., if for some constants
a1, . . . , aK the equality

∑K
k=1 akDk (s,λk ) = 0 holds for all s , then

a1 = . . .= aK = 0.
Assumption 3. There exist constants D ′max> 0 and Dmin> 0

such that

D ′max<Dmin [15]

and for all s , b, and k we have

Dk (s, b)≥Dmin, D ′k (s, b)≤D ′max,

where D ′k (s, b) stands for the derivative of the function Dk (s, b)
with respect to b.

Assumption 1 contains standard regularity conditions on the
functions Dk (s, b), which are typical assumptions on a produc-
tion function. Assumption 2 means the absence of redundant
assets: one cannot construct a synthetic asset, a portfolio with
fixed weights consisting of assets j 6=k , that yields the same div-
idends as any given asset k . Assumption 3 says that although the
growth of the total investment in an asset k leads to a growth
in the dividend paid by that asset, this growth is moderate:
its rate D ′k (s, b) =Vkd

′
k (s, b) cannot exceed the constant spec-

ified in Eq. 15. Such an assumption is natural when, in addition
to capital, a second production factor (e.g., labor) is essen-
tial. Fig. 1 illustrates that a function D(s, b) = (1 + s) · (c1b)c2

(c1, c2 are estimated, and s is a random variable which is deter-
mined by the ratio of actual and average dividend, given current
market capital) makes sense empirically and can satisfy these
assumptions.

Theorem. There exists a unique solution λ∗= (λ∗1, . . . ,λ∗K )∈
∆K to the system of equations

E
Dk (s,λ∗k )∑K

m=1 Dm(s,λ∗m)
=λ∗k , k = 1, 2, . . . ,K . [16]

We have λ∗k > 0, k = 1, . . . ,K . The portfolio rule represented by the
vector λ∗ is evolutionary stable.

In Eq. 16, s is a random element in the space S having the
same distribution as st (t = 1, 2, . . .). The symbol E stands for
the expectation with respect to this distribution. The meaning of
Eq. 16 is as follows. It says that the relative dividends

R∗k (s) :=
Dk (s,λ∗k )∑K

m=1 Dm(s,λ∗m)
=

Vkdk (s,λ∗k )∑K
m=1 Vmdm(s,λ∗m)

corresponding to the allocation of wealth across assets in the
proportions λ∗1, . . . ,λ∗K prescribed by the evolutionary stable
portfolio rule λ∗ coincide on average with these proportions.

If the functions Dk (s, b) do not depend on b, Eq. 16 boils
down to

λ∗k =ER∗k , k = 1, 2, . . . ,K .

In this case, λ∗ reduces to the prescription to invest in accor-
dance with the expected relative dividends. This is the classical
Kelly portfolio rule—betting your beliefs [Kelly (54)]‖ . In EF
models with exogenous dividends, stronger (global) versions of
results of this kind were obtained in refs. 51, 59.

‖In the classical capital growth theory with exogenous asset returns [Kelly (54), Breiman
(55), and Algoet and Cover (57)], the portfolio rule of betting your beliefs is obtained
as a result of the maximization of the expected logarithm of the portfolio return. In
our game-theoretic setting, where the performance of a strategy depends not only on
the strategy itself but on the whole strategy profile, the evolutionary stable portfolio
rule cannot be obtained as a solution to a single-agent optimization problem with a
logarithmic, or any other, objective function.
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The intuition behind the main result can now be made more
explicit using the random dynamics of relative wealth (see also
SI Appendix, Proposition 2):

r it+1 =

K∑
k=1

[ρ〈λk , rt+1〉+ (1− ρ)Rt+1,k ]
λi
kr

i
t

〈λk , rt〉
, [17]

i = 1, . . . ,N , t ≥ 0.
Assume a fix-mix investment strategy β has all of the market

wealth, then the return of asset k is[
ρβk + (1− ρ)

Dk (s,βk )∑K
m=1 Dm(s,βm)

]
/βk= :µk (s,β)/βk .

Treating these returns as exogenous, an investment strategy λ
will see its wealth evolve as

wt+1 =

K∑
k=1

µk (s,β)

βk
λkwt ,

and its growth rate E ln(wt+1/wt) as a function of λ is

g(λ) :=E ln

(
K∑

k=1

µk (s,β)
λk

βk

)
. [18]

Assumption 2 implies that it is strictly concave, and g(β) = 0
holds. Its total differential

dg(β) =

K∑
k=1

∂g

∂λk
(β)dλk =

K∑
k=1

E [µk (s,β)/βk ]dλk

is 0 for any λ if and only if E [µk (s,β)/βk ] = const (otherwise,
because

∑
k dλk = 0, there is a strategy with a strictly positive

growth rate). This condition holds only if βk =Eµk (s,β) for all

k . Theorem shows that only λ∗ has this property. Evolutionary
stability, however, is more demanding to show as one cannot
assume that returns are exogenous, but one has to deal with the
actual dynamics.

Moreover, Eq. 18 reveals that complete diversification, i.e.,
βk > 0, k = 1, . . . ,K , is a necessary condition for an ESS. The
characterization of the unique ESS in Theorem shows how an
ESS needs to diversify. Note that from an evolutionary per-
spective diversification does not serve the purpose of achiev-
ing a high-risk adjusted return but to keep the growth rate
of incumbent strategies low. One might call this “spiteful
diversification.”

Illustration
A numerical example with time-dependent investment strategies
is provided to illustrate 1) the capability of λ∗ and 2) the pitfall of
not including such a fundamental strategy in agent-based models
of financial markets.

There are two assets in supply Vk = k and dividends
dk (st ,Wt−1,k ) = 1 + stWt−1,k , k = 1, 2. The total amount of div-
idends paid by the asset k in period t is Dk (st ,Wt−1,k ) =
Vkdk (st ,Wt−1,k ). The process st is i.i.d. and log-normal with
parameters (1, 1).

There are three investment strategies. First, the ESS λ1 =
λ∗= (0.2, 0.8), which is fixed over time. Second, λ2

t is
a history-dependent, trend chaser (momentum) strategy.
Denote by Rt−1,k asset k ’s realized return from period
t − 2 to t − 1 and by Rt−1 its average over k = 1, 2.
Then λ2

t,1 := arctan(Rt−1,1−Rt−1)/π+ 0.5 and λ2
t,2 := arctan

(Rt−1,2−Rt−1)/π+ 0.5 = 1−λ2
t,1. Since there are no previous

returns in the initial period, the strategy is chosen randomly.
Third, a noise trader strategy varies from period to period. In
each period this strategy is determined by randomly drawing λ3

t,1

uniformly from [0, 1] and setting λ3
t,2 = 1−λ3

t,1.
The simulation is carried out as follows. Strategies start with

different initial wealth shares; λ∗’s initial share is r10 ≥ 0.9. In

Fig. 2. Number of time periods until the relative price of the two assets is within 2.5% of the benchmark after the equilibrium is disturbed by the
introduction of the trend chaser and the noise trader with total wealth below 10% of market capital. The number of time periods is the expected value
calculated as the average over several runs and presented as natural logarithm to show the structure.
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Fig. 3. Growth rate of λ∗ investment strategy. We measure the expected growth of wealth over 20 periods for each combination of initial wealth across
the three strategies.

each period, prices for both assets are computed by Eq. 11,
as well as the ratio of prices pt := pt,1/pt,2. Then we calculate
|p∗− pt | where p∗k = ρ

Vk
λ∗k are the equilibrium prices (the prices

that prevail when the ESS λ∗ has all wealth, i.e., r1 = 1). Port-
folios are defined by Eq. 8. Additionally, we calculate fractions
of total market wealth allocated to assets by Eq. 3. Next, we
generate random state of the world st and calculate dividends
dk (st ,Wt−1,k ). Afterward, we calculate the new wealth of all
strategies by Eq. 6 as well as returns and relative dividends, which
are needed for the trend chaser.

Fig. 2 illustrates the number of model iterations to obtain
prices close to those prevailing in the long-run equilibrium. We
calculate the expected number of periods to obtain |p∗− pt |<
2.5%, where p is the relative price of the two assets (of course,
full equilibrium is attained only asymptotically). Each point in
the diagram corresponds to a distribution of wealth across the
three strategies. First, we observe that the equilibrium is indeed
stable. Even for large perturbations, prices revert to equilib-
rium. Second, it requires a large deviation from equilibrium to
have long-lasting mispricing. For instance, when the noise trader
acquires 10% of wealth, it takes 12 iterations of the wealth
dynamic to return to equilibrium prices. For the trend chaser,
4% of total wealth has the same effect.

One can also determine which strategy has the highest growth
rate of wealth for each particular initial distribution of wealth.
It turns out that λ∗ has the highest expected growth for all
initial distributions. As an implication it follows that λ∗ is
globally stable against the history-dependent momentum strat-
egy and the noise trader. Fig. 3 shows that the wealth of λ∗

grows the fastest, the poorer the strategy. The composition
of the market ecology (moving parallel to the vertex of the
noise trader) has no impact on λ∗’s growth rate. One needs
to take into account that the wealth dynamics is driven solely
by capital gains. There is no exogenous flow of capital from
worse to better performing strategies. The result in Fig. 3 indi-
cates that if such a flow were present, convergence to equi-

librium prices would be even faster, enhancing the stability of
the ESS.

Discussion
Financial markets are modeled from a biological perspective
where investment strategies and wealth take on the role of
species and their fitness. The main innovation is that dividends
paid by a firm’s stocks are determined by the firm’s market value
and random events. This creates a feedback loop between the
wealth distribution and the production of dividends that are paid
to the investment strategies. We analyze the resulting stochastic
dynamical system with the aim to determine whether there are
investment strategies such that the wealth distribution is (locally)
stable.

Our main result is the explicit description of a unique evolu-
tionary stable investment strategy λ∗ such that the state in which
this strategy has all of the wealth is locally stable. Invading invest-
ment strategies will be driven out by the wealth dynamics. The
remarkable property of λ∗ is that it only depends on the divi-
dend production function and not on the ecology of the financial
market. It has several interesting properties such as full diversifi-
cation, which is of importance in portfolio management, and the
valuation of financial assets in terms of relative fundamentals,
which matters in asset pricing.

Our numerical results suggest that λ∗ might be globally sta-
ble. A drawback of the current model is the restriction to i.i.d.
shocks, which allow us to work with fix-mix investment strategies.
Future work will aim at relaxing this assumption to Markovian
dividends and strategies or possibly to an arbitrary time- and
history-dependent setting, which has been done successfully for
exogenous dividend processes.

Data Availability All study data are included in the article and SI Appendix.
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